My research

My research field is operator theory. Here’s a list of my publications, starting with the most recent:

  1. W. Bauer, R. Fulsche, J. Toft: Convolutions of Orlicz spaces and Orlicz Schatten classes, with applications to Toeplitz operators, preprint available at arXiv:2505.01707
  2. R. Fulsche, R. Hagger: Band-dominated and Fourier-band-dominated operators on locally compact abelian groups, preprint available at arXiv:2504.17442
  3. R. Fulsche, O. Fürst: Commutative C* algebras and Gelfand theory through phase space methods, preprint available at arXiv:2410.23024
  4. R. Fulsche, L. van Luijk: Heisenberg-smooth operators from the phase space perspective, Math. Nachr. 298 (2025), issue 8, pp. 2845 – 2866, http://doi.org/10.1002/mana.70019
  5. R. Fulsche, M. Nursultanov, G. Rozenblum: Negative eigenvalue estimates for the 1D Schrödinger operator with measure-potential, Ann. Henri Poincaré (2025), Online First, https://doi.org/10.1007/s00023-025-01549-z
  6. W. Bauer, R. Fulsche, M. Rodriguez Rodriguez: Operators in the Fock-Toeplitz algebra, in: Asharaf, N., Bauer, W., Bhat, B.V.R., Sarkar, J. (eds) Recent Developments in Spectral and Approximation Theory. ICSAT 2023. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-90240-6_5
  7. R. Fulsche: Essential positivity for Toeplitz operators on the Fock space, Integr. Equ. Oper. Theory 96 (2024), no. 3, article number 21, https://doi.org/10.1007/s00020-024-02770-x
  8. R. Fulsche, F. Luef, R. F. Werner: Wiener’s Tauberian theorem in classical and quantum harmonic analysis,  preprint available at arXiv:2405.08678
  9. R. Fulsche: A Wiener algebra for Fock space operators, preprint available at arXiv:2311.11859
  10. R. Fulsche, R. Hagger: Quantum harmonic analysis for polyanalytic Fock spaces, J. Fourier Anal. Appl. 30 (2024), article number 63, https://doi.org/10.1007/s00041-024-10124-9
  11. R. Fulsche, N. Galke: Quantum Harmonic Analysis on locally compact abelian groups, J. Fourier Anal. Appl. 31 (2025), article number 13, https://doi.org/10.1007/s00041-024-10140-9
  12. R. Fulsche, M. Rodriguez Rodriguez: Commutative G-invariant Toeplitz C* algebras on the Fock space and their Gelfand theory through Quantum Harmonic Analysis, J. Operator Theory 93, issue 2, pp. 593-620. http://dx.doi.org/10.7900/jot.2023jul28.2434
  13. R. Fulsche, L. van Luijk: A simple criterion for essential self-adjointness of Weyl pseudodifferential operators, J. Pseudo-Differ. Oper. Appl. 16, 38 (2025), https://doi.org/10.1007/s11868-025-00699-2
  14. S. M. Berge, E. Berge, R. Fulsche: A Quantum Harmonic Analysis Approach to Segal Algebras, Integr. Equ. Oper. Theory 96 (2024), no. 3, article number 20, https://doi.org/10.1007/s00020-024-02771-w
  15. W. Bauer, R. Fulsche: Resolvent algebra in Fock-Bargmann representation, In: Ambily, A.A., Kiran Kumar, V.B. (eds) Semigroups, Algebras and Operator Theory. ICSAOT 2022. Springer Proceedings in Mathematics & Statistics, vol 436. Springer, Singapore, https://doi.org/10.1007/978-981-99-6349-2_12
  16. R. Fulsche: Toeplitz operators on non-reflexive Fock spaces, Rev. Mat. Iberoam. 40 (2024), no. 3, 1115–1148, https://doi.org/10.4171/rmi/1459
  17. R. Fulsche, M. Nursultanov: Spectral Theory for Sturm-Liouville operators with measure potentials through Otelbaev’s function, J. Math. Phys. 63, 012101 (2022), https://doi.org/10.1063/5.0062669
  18. R. Fulsche: Correspondence theory on p-Fock spaces with applications to Toeplitz algebras, J. Funct. Anal. 279 (2020), no. 7, https://doi.org/10.1016/j.jfa.2020.108661
  19. W. Bauer, R. Fulsche: Berger-Coburn theorem, localized operators, and the Toeplitz algebra, In: Bauer W., Duduchava R., Grudsky S., Kaashoek M. (eds) Operator Algebras, Toeplitz Operators and Related Topics. Operator Theory: Advances and Applications, vol 279. Birkhäuser, https://doi.org/10.1007/978-3-030-44651-2_8
  20. R. Fulsche: Toeplitz Operators on Pluriharmonic Function Spaces: Deformation Quantization and Spectral Theory, Integr. Equ. Oper. Theory (2019) 91:40, https://doi.org/10.1007/s00020-019-2538-y
  21. R. Fulsche, R. Hagger: Fredholmness of Toeplitz operators on the Fock space, Complex Anal. Oper. Theory 13 (2019), no. 2, 375-403, https://doi.org/10.1007/s11785-018-0803-8
  22. J. F. Brasche, R. Fulsche: Approximation of eigenvalues of Schrödinger operators, Nanosystems: Phys. Chem. Math. 8 (2018), no. 2, 145-161, https://doi.org/10.17586/2220-8054-2018-9-2-145-161